Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K(+) currents in beta-cells: a possible glucose-dependent insulinotropic mechanism.
نویسندگان
چکیده
Glucagon-like peptide-1 (GLP-1) acts through its G-protein-coupled receptor to enhance glucose-stimulated insulin secretion from pancreatic beta-cells. This is believed to result from modulation of at least two ion channels: ATP-sensitive K(+) (K(ATP)) channels and voltage-dependent Ca(2+) channels. Here, we report that GLP-1 receptor signaling also regulates the activity of beta-cell voltage-dependent K(+) (K(V)) channels, themselves potent glucose-dependent regulators of insulin secretion. GLP-1 receptor activation with exendin 4 (10(-8) mol/l) in rat beta-cells antagonized K(V) currents by 43.3 +/- 6.3%, whereas the GLP-1 receptor antagonist exendin 9-39 had no effect. The effect of GLP-1 receptor activation on K(V) currents could be replicated (current reduction of 55.7 +/- 6.0%) by G-protein activation with GMP-PNP (10 nmol/l). The cAMP pathway antagonist Rp-cAMPS (100 micro mol/l) prevented current inhibition by exendin 4, implicating cAMP signaling in GLP-1 receptor modulation of beta-cell K(V) currents. Finally, exendin 4 (10(-8) mol/l) increased the amplitude (130 +/- 5.7%) and duration (285 +/- 15.9%) of the beta-cell depolarization response to current injection, independent of any effect on K(ATP) or Ca(2+) channels. The present results demonstrate that GLP-1 receptor signaling can antagonize beta-cell repolarization by reducing voltage-dependent K(+) currents, an effect likely to contribute to GLP-1's glucose-dependent insulinotropic effect.
منابع مشابه
Mechanisms underlying glucose‐dependent insulinotropic polypeptide and glucagon‐like peptide‐1 secretion
The incretin hormones, glucose-dependent insulinotropic peptide and glucagon-like peptide-1, are secreted from intestinal K- and L cells, respectively, with the former being most abundant in the proximal small intestine, whereas the latter increase in number towards the distal gut. Although an overlap between K- and L cells can be observed immunohistochemically or in murine models expressing fl...
متن کاملExpression and functional activity of glucagon, glucagon-like peptide I, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells.
Rat pancreatic alpha- and beta-cells are critically dependent on hormonal signals generating cyclic AMP (cAMP) as a synergistic messenger for nutrient-induced hormone release. Several peptides of the glucagon-secretin family have been proposed as physiological ligands for cAMP production in beta-cells, but their relative importance for islet function is still unknown. The present study shows ex...
متن کاملGlucagon-like peptide 1: evolution of an incretin into a treatment for diabetes.
Glucagon-like peptide 1 (GLP-1) is a product of proglucagon that is secreted by specialized intestinal endocrine cells after meals. GLP-1 is insulinotropic and plays a role in the incretin effect, the augmented insulin response observed when glucose is absorbed through the gut. GLP-1 also appears to regulate a number of processes that reduce fluctuations in blood glucose, such as gastric emptyi...
متن کاملGlucagon-like-peptide-1 secretion from canine L-cells is increased by glucose-dependent-insulinotropic peptide but unaffected by glucose.
Glucagon-like peptide-1(7-36)amide (GLP-1) is a potent insulinotropic peptide released from the small intestine. To investigate the regulation of GLP-1 secretion, we established a GLP-1 release assay based on primary canine intestinal L-cells. The ileal mucosa was digested with collagenase/EDTA to a single cell suspension and enriched for L-cells by counterstream centrifugal elutriation. We per...
متن کاملNutrient regulation of pancreatic beta-cell function in diabetes: problems and potential solutions.
Increasing prevalence of obesity combined with longevity will produce an epidemic of Type 2 (non-insulin-dependent) diabetes in the next 20 years. This disease is associated with defects in insulin secretion, specifically abnormalities of insulin secretory kinetics and pancreatic beta-cell glucose responsiveness. Mechanisms underlying beta-cell dysfunction include glucose toxicity, lipotoxicity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 51 Suppl 3 شماره
صفحات -
تاریخ انتشار 2002